Conforme au programme
Polynésie
Septembre
2015
Bac
Spécifique
Tle ES
Mathématiques
Lecture graphique, intégrale, logiciel de calcul formel
Fonctions
Intégration
.icon_annales.png On considère une fonction P définie variable et dérivale sur l'intervalle [0 ; 60].

4Lecture graphique, intégrale, logiciel de calcul formel45 min

Polynésie, septembre 2015

ES – Enseignement spécifique
L – Enseignement de spécialité

Fonctions

Intégration

Exercice

5 pts

On considère une fonction P définie et dérivable sur l’intervalle [0 ; 60].

On donne, ci-dessous, la courbe représentative 𝓒 de la fonction P.

img1

Partie A

À partir d’une lecture graphique, répondre aux questions qui suivent :

1 En argumentant la réponse, donner le signe de P′(54), où P′ est la fonction dérivée de P.

2 Donner un intervalle sur lequel la fonction P est convexe.

3 Donner, à l’unité près, les solutions de l’équation P(x) = 10.

4 On note A le nombre 0 10 P( x )dx  ; choisir l’encadrement qui convient pour A :

a. 0 < A < 60 ; b. 60 < A < 70 ; c. 6 < A < 7 ; d. 10 < A < 11.

Partie B

La fonction P est définie sur l’intervalle [0 ; 60] par :

P( x )=6+( 60x ) e 0,1x5 .

À l’aide d’un logiciel de calcul formel, on a obtenu les résultats suivants :

Actions

Résultats

definir(P(x)=6+(60-x)*exp(0,1*x-5))

x↦6+(60-x)*exp(0.1*x-5)

deriver(P(x),x)

(-0.1*x+5)*exp(0.1*x-5)

deriver(deriver(P(x),x),x)

(-0.01*x+0.4)*exp(0.1*x-5)

1 a. Étudier le signe de P′(x) sur l’intervalle [0 ; 60], où P′ est la fonction dérivée de P.

b. En déduire les variations de la fonction P sur l’intervalle [0 ; 60] et vérifier que la fonction P admet, sur cet intervalle, un maximum valant 16.

2 Montrer que l’équation P(x) = 10 a une solution unique x0 sur l’intervalle [0 ; 40]. Donner une valeur approchée de x0 à 0,1 près.

3 En exploitant un des résultats donnés par le logiciel de calcul formel, étudier la convexité de la fonction P.

Voir le corrigé

Cet article est réservé aux abonnés
ou aux acheteurs de livres ABC du Bac

Pour approfondir le thème...

Tle ES
Mathématiques
Fonctions, Intégration
Spécifique
Polynésie
Juin
2016
Bac
.icon_annales.png
On donne la courbe représentative d'une fonction g.
fonction | nombres réels | intervalle | courbe | abscisse
Tle ES
Mathématiques
Fonctions, Intégration
Spécifique
Polynésie
Juin
2016
Bac
.icon_annales.png
Un publicitaire envisage la pose d'un panneau rectangulaire sous une partie de rampe de skateboard.
rampe | courbe | fonction | intervalle | panneau publicitaire
Tle ES
Mathématiques
Fonctions, Probabilités, Suites
Spécifique
Inde
Avril
2016
Bac
.icon_annales.png
On considère la suite géométrique de premier terme 1 et de raison 2.
fonction | intervalle | suite géométrique | variable aléatoire | probabilités
Tle ES
Mathématiques
Fonctions
Spécifique
Inde
Avril
2016
Bac
.icon_annales.png
L'entrepise BBE (Bio BoisÉnergie) fabrique et vend des granulés de bois pour alimenter des chaudières et des poêles chez des particuliers ou dans des collectivités.
granulés de bois | fonction | intervalle | recette | représentation graphique
Tle ES
Mathématiques
Fonctions, Probabilités
Spécifique
Inde
Avril
2016
Bac
.icon_annales.png
À l'issue des épreuves du baccalauréat, une étude est faite sur les notes obtenues par les candidats en mathématiques et en français.
baccalauréat | statistiques | évènement | probabilités | arbre pondéré