France métropolitaine
Septembre
2012
Bac
Spécifique
Tle
Mathématiques
Probabilité conditionnelle, arbre, loi binomiale
Probabilités et statistiques
.icon_annales.png Une urne contient quatre boules rouges et deux boules noires indiscernables au toucher.

14Probabilité conditionnelle, Arbre, Loi binomiale1 heure

France métropolitaine, septembre 2012

Enseignement spécifique

Probabilités et statistiques

Exercice

5 pts

1 Une urne contient quatre boules rouges et deux boules noires indiscernables au toucher.

On prélève au hasard une boule de l’urne.

Si elle est rouge, on la remet dans l’urne et on prélève au hasard une seconde boule.

Si la première boule est noire, on prélève au hasard une seconde boule dans l’urne sans remettre la boule tirée.

a. Quelle est la probabilité que les boules tirées soient rouges ?

b. Calculer la probabilité que la seconde boule tirée soit noire.

c. Calculer la probabilité que la première boule soit rouge sachant que la seconde est noire.

2 Soit n un entier naturel supérieur ou égal à 1.

Une urne contient quatre boules rouges et n boules noires indiscernables au toucher.

On prélève successivement et au hasard quatre boules de l’urne en remettant dans l’urne la boule tirée après chaque tirage.

La variable aléatoire X donnant le nombre de boules rouges tirées au cours de ces quatre tirages suit la loi binomiale de paramètres 4 et p.

a. Donner l’expression de p en fonction de n.

b. Démontrer que la probabilité qn que l’une au moins des quatre boules tirées soit noire est telle que q n =1 ( 4 n+4 ) 4 .

c. Quel est le plus petit entier naturel n pour lequel la probabilité qn est supérieure ou égale à 0,9999 ?

Voir le corrigé

Cet article est réservé aux abonnés
ou aux acheteurs de livres ABC du Bac

Pour approfondir le thème...

Tle
Mathématiques
Probabilités et statistiques
Spécialité
Polynésie
Septembre
2014
Bac
.icon_annales.png
Une entreprise produit à la chaîne des jouets pesant en moyenne 400 g.
loi normale | écart-type | probabilité | intervalle de fluctuation asymptotique | modélisation
Tle
Mathématiques
Probabilités et statistiques
Spécialité
Polynésie
Juin
2013
Bac
.icon_annales.png
On s'intéresse à une espèce de poissons présente dans deux zones différentes (zone 1 et zone 2) de la planète.
variable aléatoire | loi normale | écart-type | lecture graphique | probabilité | graphe
Tle
Mathématiques
Probabilités et statistiques
Spécialité
Amérique du Nord
Juin
2013
Bac
.icon_annales.png
Une étude interne à une grande banque a montré qu'on peut estimer que l'âge moyen d'un client demandant un crédit immobilier est une variable aléatoire, notée X.
probabilité | variable aléatoire | loi normale
Tle
Mathématiques
Probabilités et statistiques
Spécialité
Antilles-Guyane
Juin
2013
Bac
.icon_annales.png
La direction d'une société fabriquant des composants électroniques impose à ses deux sites de production de respecter des proportions en termes de contrat d'embauche du personnel.
pourcentage | proportion | intervalle de fluctuation asymptotique
Tle
Mathématiques
Probabilités et statistiques
Spécialité
Antilles-Guyane
Septembre
2014
Bac
.icon_annales.png
Une entreprise fabrique des balles de tennis et dispose de trois chaînes de fabrication appelées A, B, C.
arbre pondéré | probabilité | loi binomiale | variable aléatoire | loi normale | écart-type