Liban
Mai
2015
Bac
Spécifique
Tle
Mathématiques
Probabilité, intervalle de confiance
Probabilités et statistiques
.icon_annales.png En prévision d'une élection entre deux candidats A et B, un institut de sondage recueille les intentions de vote de futurs électeurs.

Sujet 5Probabilité, intervalle de confiance1 heure

Liban, mai 2015

Enseignement spécifique

Statistiques et probabilités

Exercice

5 pts

En prévision d’une élection entre deux candidats A et B, un institut de sondage recueille les intentions de vote de futurs électeurs.

Parmi les 1 200 personnes qui ont répondu au sondage, 47 % affirment vouloir voter pour le candidat A et les autres pour le candidat B.

Compte tenu du profil des candidats, l’institut de sondage estime que 10 % des personnes déclarant vouloir voter pour le candidat A ne disent pas la vérité et votent en réalité pour le candidat B, tandis que 20 % des personnes déclarant vouloir voter pour le candidat B ne disent pas la vérité et votent en réalité pour le candidat A.

On choisit au hasard une personne ayant répondu au sondage et on note :

● A l’événement « la personne interrogée affirme vouloir voter pour le candidat A » ;

● B l’événement « la personne interrogée affirme vouloir voter pour le candidat B » ;

● V l’événement « la personne interrogée dit la vérité ».

1 Construire un arbre de probabilités traduisant la situation. 0,75 pt

2 a. Calculer la probabilité que la personne interrogée dise la vérité. 0,5 pt

b. Sachant que la personne interrogée dit la vérité, calculer la probabilité qu’elle affirme vouloir voter pour le candidat A. 0,75 pt

3 Démontrer que la probabilité que la personne choisie vote effectivement pour le candidat A est 0,529. 1 pt

4 L’institut de sondage publie alors les résultats suivants :

52,9 % des électeurs* voteraient pour le candidat A.

* estimation après redressement, fondée sur un sondage d’un échantillon représentatif de 1 200 personnes.

Au seuil de confiance de 95 %, le candidat A peut-il croire en sa victoire ? 1 pt

5 Pour effectuer ce sondage, l’institut a réalisé une enquête téléphonique à raison de 10 communications par demi-heure. La probabilité qu’une personne contactée accepte de répondre à cette enquête est 0,4.

L’institut de sondage souhaite obtenir un échantillon de 1 200 réponses.

Quel temps moyen, exprimé en heures, l’institut doit-il prévoir pour parvenir à cet objectif ? 1 pt

Voir le corrigé

Cet article est réservé aux abonnés
ou aux acheteurs de livres ABC du Bac

Pour approfondir le thème...

Tle
Mathématiques
Probabilités et statistiques
Spécialité
Polynésie
Septembre
2014
Bac
.icon_annales.png
Une entreprise produit à la chaîne des jouets pesant en moyenne 400 g.
loi normale | écart-type | probabilité | intervalle de fluctuation asymptotique | modélisation
Tle
Mathématiques
Probabilités et statistiques
Spécialité
Polynésie
Juin
2013
Bac
.icon_annales.png
On s'intéresse à une espèce de poissons présente dans deux zones différentes (zone 1 et zone 2) de la planète.
variable aléatoire | loi normale | écart-type | lecture graphique | probabilité | graphe
Tle
Mathématiques
Probabilités et statistiques
Spécialité
Amérique du Nord
Juin
2013
Bac
.icon_annales.png
Une étude interne à une grande banque a montré qu'on peut estimer que l'âge moyen d'un client demandant un crédit immobilier est une variable aléatoire, notée X.
probabilité | variable aléatoire | loi normale
Tle
Mathématiques
Probabilités et statistiques
Spécialité
Antilles-Guyane
Juin
2013
Bac
.icon_annales.png
La direction d'une société fabriquant des composants électroniques impose à ses deux sites de production de respecter des proportions en termes de contrat d'embauche du personnel.
pourcentage | proportion | intervalle de fluctuation asymptotique
Tle
Mathématiques
Probabilités et statistiques
Spécialité
Antilles-Guyane
Septembre
2014
Bac
.icon_annales.png
Une entreprise fabrique des balles de tennis et dispose de trois chaînes de fabrication appelées A, B, C.
arbre pondéré | probabilité | loi binomiale | variable aléatoire | loi normale | écart-type