Conforme au programme
France métropolitaine
Juin
2015
Bac
Spécifique
Tle ES
Mathématiques
Fonction exponentielle, lecture graphique, logiciel de calcul formel
Fonctions
.icon_annales.png La courbe représente dans un repère orthogonal une fonction f définie et dérivable sur l'intervalle [-4 ; 3].

Sujet 1Fonction exponentielle, lecture graphique, logiciel de calcul formel55 min

France métropolitaine, La Réunion, juin 2015

ES – Enseignement spécifique
L – Enseignement de spécialité

Fonctions

Exercice

6 pts

La courbe (𝒞) ci-après représente dans un repère orthogonal une fonction f définie et dérivable sur l’intervalle [– 4 ; 3]. Les points A d’abscisse – 3 et B(0 ; 2) sont sur la courbe (𝒞).

Sont aussi représentées sur ce graphique les tangentes à la courbe (𝒞) respectivement aux points A et B, la tangente au point A étant horizontale. On note ′ la fonction dérivée de f.

img1

Les parties A et B sont indépendantes.

 

Partie A

1 Par lecture graphique, déterminer :

a. ′ (– 3) ;
0,5 pt

b. f (0) et ′(0).
0,75 pt

2 La fonction f est définie sur [- 4 ; 3] par f (x) = a + (x + b)e xa et b sont deux réels que l’on va déterminer dans cette partie.

a. Calculer ′(x) pour tout réel x de [– 4 ; 3]. 0,5 pt

b. À l’aide des questions 1.b. et 2.a., montrer que les nombres a et b vérifient le système suivant :

{ a+b=2 1b= 3
0,75 pt

c. Déterminer alors les valeurs des nombres a et b. 0,5 pt

 

Partie B

On admet que la fonction f est définie sur[– 4 ; 3] par :

f (x) = – 2 + (x + 4)e– x.

1 Justifier que, pour tout réel x de [– 4 ; 3], ′(x) = (– x – 3)e– x et en déduire le tableau de variation de f sur [– 4 ; 3]. 0,75 pt

2 Montrer que l’équation f (x) = 0 admet une unique solution α sur [– 3 ; 3], puis donner une valeur approchée de α à 0,01 près par défaut. 0,75 pt

3 On souhaite calculer l’aire S, en unité d’aire, du domaine délimité par la courbe (𝒞), l’axe des abscisses et les droites d’équation x = – 3 et x = 0.

a. Exprimer, en justifiant, cette aire à l’aide d’une intégrale. 0,75 pt

b. Un logiciel de calcul formel donne les résultats ci-dessous :

1

F(x):=–2x+ (–x–5)*exp(–x)

//Interprète F

//Succès lors de la compilation F

x –>–2*x+(–x–5)*exp(–x)

2

derive (F(x))

–exp(–x)–exp(–x)*(–x–5)–2

3

simplifier (–exp(–x)–exp(–x)*(–x–5)–2)

x*exp(–x)+4*exp(–x)–2

À l’aide de ces résultats, calculer la valeur exacte de l’aire S, puis sa valeur arrondie au centième. 0,75 pt

Voir le corrigé

Cet article est réservé aux abonnés
ou aux acheteurs de livres ABC du Bac

Pour approfondir le thème...

Tle ES
Mathématiques
Fonctions, Intégration
Spécifique
Polynésie
Juin
2016
Bac
.icon_annales.png
On donne la courbe représentative d'une fonction g.
fonction | nombres réels | intervalle | courbe | abscisse
Tle ES
Mathématiques
Fonctions, Intégration
Spécifique
Polynésie
Juin
2016
Bac
.icon_annales.png
Un publicitaire envisage la pose d'un panneau rectangulaire sous une partie de rampe de skateboard.
rampe | courbe | fonction | intervalle | panneau publicitaire
Tle ES
Mathématiques
Fonctions, Probabilités, Suites
Spécifique
Inde
Avril
2016
Bac
.icon_annales.png
On considère la suite géométrique de premier terme 1 et de raison 2.
fonction | intervalle | suite géométrique | variable aléatoire | probabilités
Tle ES
Mathématiques
Fonctions
Spécifique
Inde
Avril
2016
Bac
.icon_annales.png
L'entrepise BBE (Bio BoisÉnergie) fabrique et vend des granulés de bois pour alimenter des chaudières et des poêles chez des particuliers ou dans des collectivités.
granulés de bois | fonction | intervalle | recette | représentation graphique
Tle ES
Mathématiques
Fonctions, Probabilités
Spécifique
Inde
Avril
2016
Bac
.icon_annales.png
À l'issue des épreuves du baccalauréat, une étude est faite sur les notes obtenues par les candidats en mathématiques et en français.
baccalauréat | statistiques | évènement | probabilités | arbre pondéré