Conforme au programme
Liban
Mai
2016
Bac
Spécifique
Tle S
Mathématiques
Points alignés
Nombres complexes
.icon_annales.png On considère une suite de nombres complexes.

Sujet 5Points alignés35 min

Liban, mai 2016

Nombres complexes

Exercice

3 pts

On considère la suite (zn) de nombres complexes définie pour tout entier naturel n par :

{ z 0 =0 z n+1 = 1 2 i× z n +5

Dans le plan rapporté à un repère orthonormé, on note Mn le point d’affixe zn.

On considère le nombre complexe zA = 4 + 2i et A le point du plan d’affixe zA.

1 Soit (un) la suite définie pour tout entier naturel n par unzn – zA.

a. Montrer que, pour tout entier naturel n, u n+1 = 1 2 i× u n . 1 pt

b. Démontrer que, pour tout entier naturel n :

u n = ( 1 2 i ) n (42i). 1 pt

2 Démontrer que, pour tout entier naturel n, les points A, Mn et Mn + 4 sont alignés. 1 pt

Voir le corrigé

Cet article est réservé aux abonnés
ou aux acheteurs de livres ABC du Bac

Pour approfondir le thème...

Tle S
Mathématiques
Fonctions, Nombres complexes
Polynésie
Septembre
2015
Bac
.icon_annales.png
Déterminer l'écriture exponentielle du nombre complexe u.
nombre complexe | fonction | conjecture | limite | dérivée | primitive
Tle S
Mathématiques
Nombres complexes
Spécifique
Amérique du Nord
Juin
2016
Bac
.icon_annales.png
On considère le point A d'affixe 4, le point B d'affixe 4i et les points C et D tels que ABCD est un carré de centre O.
nombre complexe | forme exponentielle | carré
Tle S
Mathématiques
Géométrie dans le plan, Nombres complexes
Spécifique
Antilles-Guyane
Juin
2016
Bac
.icon_annales.png
Déterminer le nombre de points d'intersection entre la courbe et la droite en fonction des valeurs du réel a.
nombre complexe | cercle
Tle S
Mathématiques
Algorithmique, Géométrie dans le plan, Nombres complexes
Spécifique
Centres étrangers
Juin
2016
Bac
.icon_annales.png
On veut modéliser dans le plan la coquille d'un nautile à l'aide d'une ligne brisée en forme de spirale.
nombre complexe | algorithme | angle
Tle S
Mathématiques
Algorithmique, Fonctions, Nombres complexes
Spécifique
Liban
Mai
2016
Bac
.icon_annales.png
Pour chaque affirmation, dire si elle est vraie ou fausse en justifiant la réponse.
loi normale | nombre complexe | fonction exponentielle | algorithme