France métropolitaine
Juin
2015
Bac
Spécialité
Tle
Mathématiques
Fonction exponentielle, lecture graphique, logiciel de calcul formel
Fonctions
.icon_annales.png La courbe représente dans un repère orthogonal une fonction f définie et dérivable sur l'intervalle [-4 ; 3].

Sujet 1Fonction exponentielle, lecture graphique, logiciel de calcul formel55 min

France métropolitaine, La Réunion, juin 2015

ES – Enseignement spécifique
L – Enseignement de spécialité

Fonctions

Exercice

6 pts

La courbe (𝒞) ci-après représente dans un repère orthogonal une fonction f définie et dérivable sur l’intervalle [– 4 ; 3]. Les points A d’abscisse – 3 et B(0 ; 2) sont sur la courbe (𝒞).

Sont aussi représentées sur ce graphique les tangentes à la courbe (𝒞) respectivement aux points A et B, la tangente au point A étant horizontale. On note ′ la fonction dérivée de f.

img1

Les parties A et B sont indépendantes.

 

Partie A

1 Par lecture graphique, déterminer :

a. ′ (– 3) ;
0,5 pt

b. f (0) et ′(0).
0,75 pt

2 La fonction f est définie sur [- 4 ; 3] par f (x) = a + (x + b)e xa et b sont deux réels que l’on va déterminer dans cette partie.

a. Calculer ′(x) pour tout réel x de [– 4 ; 3]. 0,5 pt

b. À l’aide des questions 1.b. et 2.a., montrer que les nombres a et b vérifient le système suivant :

{ a+b=2 1b= 3
0,75 pt

c. Déterminer alors les valeurs des nombres a et b. 0,5 pt

 

Partie B

On admet que la fonction f est définie sur[– 4 ; 3] par :

f (x) = – 2 + (x + 4)e– x.

1 Justifier que, pour tout réel x de [– 4 ; 3], ′(x) = (– x – 3)e– x et en déduire le tableau de variation de f sur [– 4 ; 3]. 0,75 pt

2 Montrer que l’équation f (x) = 0 admet une unique solution α sur [– 3 ; 3], puis donner une valeur approchée de α à 0,01 près par défaut. 0,75 pt

3 On souhaite calculer l’aire S, en unité d’aire, du domaine délimité par la courbe (𝒞), l’axe des abscisses et les droites d’équation x = – 3 et x = 0.

a. Exprimer, en justifiant, cette aire à l’aide d’une intégrale. 0,75 pt

b. Un logiciel de calcul formel donne les résultats ci-dessous :

1

F(x):=–2x+ (–x–5)*exp(–x)

//Interprète F

//Succès lors de la compilation F

x –>–2*x+(–x–5)*exp(–x)

2

derive (F(x))

–exp(–x)–exp(–x)*(–x–5)–2

3

simplifier (–exp(–x)–exp(–x)*(–x–5)–2)

x*exp(–x)+4*exp(–x)–2

À l’aide de ces résultats, calculer la valeur exacte de l’aire S, puis sa valeur arrondie au centième. 0,75 pt

Voir le corrigé

Cet article est réservé aux abonnés
ou aux acheteurs de livres ABC du Bac

Pour approfondir le thème...

Tle
Mathématiques
Algorithmique, Fonctions, Intégration, Probabilités
Spécifique
Nouvelle-Calédonie
Mars
2016
Bac
.icon_annales.png
La proportion de gauchers dans la population française est de 13 %.
gauchers | proportion | fluctuation asymptotique | fonction | fréquence
Tle
Mathématiques
Fonctions, Intégration, Pourcentages
Spécifique
Polynésie
Septembre
2015
Bac
.icon_annales.png
Un cabinet d'audit a été chargé d'étudier la répartition des salaires dans deux filiales d'une entreprise, appelées A et B.
répartition des salaires | fonction | courbe représentative | pourcentage | coefficient de Gini
Tle
Mathématiques
Fonctions, Intégration
Spécifique
Polynésie
Septembre
2015
Bac
.icon_annales.png
On considère une fonction P définie variable et dérivale sur l'intervalle [0 ; 60].
fonction définie | fonction dérivable | courbe représentative | intervalle | lecture graphique
Tle
Mathématiques
Fonctions
Spécifique
Nouvelle-Calédonie
Mars
2016
Bac
.icon_annales.png
On modélise le nombre de malades à l'aide de la fonction f.
épidémie | courbe | graphique | fonction | propagation
Tle
Mathématiques
Fonctions
Spécifique
Inde
Avril
2016
Bac
.icon_annales.png
L'entrepise BBE (Bio BoisÉnergie) fabrique et vend des granulés de bois pour alimenter des chaudières et des poêles chez des particuliers ou dans des collectivités.
granulés de bois | fonction | intervalle | recette | représentation graphique